什么是梦想?

发现 Layui 年度最佳案例111


首页 人工智能 人工智能机器学习全新升级版I


人工智能机器学习全新升级版I

资源介绍

人工智能机器学习全新升级版I

教程内容:

  1. 本课程的教学重心是从数学层面理解并掌握推导经典的机器学习算法,从历史到细节深入了解机器学习的基本思想和各种算法的具体思路与方法。
  2. 强化数学、概率论、数理统计的基础知识,夯实机器学习的基础必备知识。
  3. 本课程将提供严谨的数学推导过程文档,帮助学员更好地掌握算法推导(面试必备)
  4. 课程中讲设置随堂测验环节,帮助学员在课中巩固和理解重要知识点。
  5. 课程将提供学员经过老师精心整理的配套学习资料和经典论文,在课程的不同阶段给学员用来复习和学习。

教程目录:
第一课:机器学习的数学基础

  1. 机器学习的数学基础
    a. 函数与数据的泛化
    b. 推理与归纳 (Deduction and Induction)
  2. 线性代数(Linear Algebra)
    a. 向量与矩阵 (Vector and Matrix)
    b. 特征值与特征向量
    c. 向量与高维空间
    d. 特征向量(Feature Vector)
  3. 概率与统计(Probability and Statistics)
    a. 条件概率与经典问题 (Conditional Probability)
    b. 边缘概率 (Marginal Probability)
  4. 作业/实践: 财宝问题的概率计算程序
    第二课:机器学习的数学基础
  5. 统计推理(Statistical Inference)
    a. 贝叶斯原理与推理 (Bayesian Theorem)
    b. 极大似然估计 (Maximum Likelihood)
    c. 主观概率(Subjective Probability)
    d. 最大后延概率(MAP)
  6. 随机变量(Random Variable)
    a. 独立与相关 (Independence)
    b. 均值与方差 (Mean and Variance)
    c. 协方差 (Co-Variance)
  7. 概率分布(Probability Distributions)
  8. 中心极限定理(Central Limit Theorem)
  9. 作业/实践: 概率分布采样与不同随机变量之间协方差计算
    第三课:机器学习的数学基础
  10. 梯度下降(Gradient Descent)
    a. 导数与梯度(Derivative and Gradient)
    b. 随机梯度下降(SGD)
    c. 牛顿方法(Newton’s Method)
  11. 凸函数(Convex Function)
    a. Jensen不等式(Jensen’s Inequality)
    b. 拉格朗日乘子(Lagrange Multiplier)
  12. 作业/实践: 利用牛顿方法求解给定的方程
    第四课:机器学习的哲学(Philosophy of ML)
  13. 算法的科学(Science of Algorithms)
    a. 输入与输出的神话(Mystery of I/O)
    b. 奥卡姆剃刀(Occam’s Razor)
  14. 维数的诅咒(Curse of Dimensionality)
    a. 高维的几何特性 (Geometric Properity )
    b. 高维空间流形(High-dimensional Manifold)
  15. 机器学习与人工智能(Machine learning and AI)
  16. 机器学习的范式(Paradigms of ML)
    第五课:经典机器学习模型(Classical ML Models)
  17. 样本学习(Case-Based Reasoning)
    a. K-近邻(K-Nearest Neighbors)
    b. K-近邻预测(KNN for Prediction)
    c. 距离与测度(Distance and Metric)
  18. 朴素贝叶斯(Naïve Bayes Classifier)
    a. 条件独立(Conditional Independence)
    b. 分类(Naive Bayes for Classification)
  19. 作业/实践:垃圾邮件分类的案例
    第六课:经典机器学习模型(Classical ML Models)
  20. 决策树(Decision Tree Learning)
    a. 信息论与概率
    b. 信息熵(Information Entropy)
    c. ID3, CART算法
  21. 决策树剪枝(Pruning)
  22. 软决策树(Soft Decision Tree)
  23. 决策树与规则(DT and Rule Learning)
  24. 作业/实践:决策树分类实验
    第七课:经典机器学习模型(Classical ML Models)
  25. 集成学习(Ensemble learning)
    a. Bagging and Boosting
    b. AdaBoost
    c. 误差分解(Bias-Variance Decomposition)
    d. 随机森林(Boosting and Random Forest)
  26. 模型评估(Model Evaluation)
    a. 交叉验证(Cross-ValIDAtion)
    b. ROC (Receiver Operating Characteristics)
    c. Cost-Sensitive Learning
  27. 作业/实践:随机森林与决策树分类实验的比较
    第八课:线性模型(Linear Models)
  28. 线性模型(Linear Models)
    a. 线性拟合(Linear Regression)
  29. 最小二乘法(LMS)
    b. 线性分类器(Linear Classifier)
  30. 感知器(Perceptron)
  31. 对数几率回归(Logistic Regression)
  32. 线性模型的概率解释 (Probabilistic Interpretation)
  33. 作业/实践:对数几率回归的文本情感分析中应用
    第九课:线性模型(Linear Models)
  34. 线性判别分析 (Linear Discrimination Analysis)
  35. 约束线性模型 (Linear Model with Regularization)
    a. LASSO
    b. Ridge Regression
  36. 稀疏表示与字典学习
    a. Sparse Representation & Coding
    b. Dictionary Learning
    第十课:核方法(Kernel Methods)
  37. 支持向量机SVM(Support Vector Machines)
    a. VC-维(VC-Dimension)
    b. 最大间距(Maximum Margin)
    c. 支撑向量(Support Vectors)
  38. 作业/实践:SVM不同核函数在实际分类中比较
    第十一课:核方法(Kernel Methods)
  39. 对偶拉格朗日乘子
  40. KKT条件(KKT Conditions)
  41. Support Vector Regression (SVR)
  42. 核方法(Kernel Methods)
    第十二课:统计学习(Statistical Learning)
  43. 判别模型与生成模型
    a. 隐含变量(Latent Variable)
  44. 混合模型(Mixture Model)
    a. 三枚硬币问题(3-Coin Problem)
    b. 高斯混合模型(Gaussian Mixture Model)
  45. EM算法(Expectation Maximization)
    a. 期望最大(Expectation Maximization)
    b. 混合模型的EM算法(EM for Mixture Models)
    c. Jensen 不等式 (Jensen’s Inequality)
    d. EM算法推导与性能 (EM Algorithm)
    第十三课:统计学习(Statistical Learning)
  46. 隐马可夫模型(Hidden Markov Models)
    a. 动态混合模型(Dynamic Mixture Model)
    b. 维特比算法(Viterbi Algorithm)
    c. 算法推导 (Algorithm)
  47. 条件随机场(Conditional Random Field)
    第十四课:统计学习(Statistical Learning)
  48. 层次图模型(Hierarchical Bayesian Model)
    a. 概率图模型 (Graphical Model)
    b. 从隐含语义模型到p-LSA (From LSA to P-LSA)
    c. Dirichlet 分布与特点(Dirichlet Distribution)
    d. 对偶分布(Conjugate Distribution)
    第十五课:统计学习(Statistical Learning)
  49. 主题模型(Topic Model – LDA)
    a. Latent Dirichlet Allocation
    b. 文本分类(LDA for Text Classification)
  50. 中文主题模型(Topic Modeling for Chinese)
  51. 其他主题模型(Other Topic Variables)
    第十六课:无监督学习(Unsupervised Learning)
  52. K-均值算法(K-Means)
    a. 核密度估计(Kernel Density Estimation)
    b. 层次聚类(Hierarchical Clustering)
  53. 蒙特卡洛(Monte Carlo)
    a. 蒙特卡洛树搜索(Monte Carol Tree Search)
    b. MCMC(Markov Chain Monte Carlo)
    c. Gibbs Sampling
    第十七课:流形学习(Manifold Learning)
  54. 主成分分析(PCA)
    a. PCA and ICA
  55. 低维嵌入(Low-Dimensional Embedding)
    a. 等度量映射(Isomap)
    b. 局部线性嵌入(Locally Linear Embedding)
    第十八课:概念学习(Concept Learning)
  56. 概念学习(Concept Learning)
    a. 经典概念学习
    b. One-Short概念学习
  57. 高斯过程学习(Gaussian Process for ML)
    c. Dirichlet Process
    第十九课:强化学习(Reinforcement Learning)
  58. 奖赏与惩罚(Reward and Penalty)
    a. 状态空间 (State-Space Model)
    b. Q-学习算法 (Q-Learning)
  59. 路径规划 (Path Planning)
  60. 游戏人工智能 (Game AI)
  61. 作业/实践:小鸟飞行游戏的自动学习算法
    第二十课:神经网络
  62. 多层神经网络
    a. 非线性映射(Nonlinear Mapping)
    b. 反向传播(Back-propagation)
  63. 自动编码器(Auto-Encoder)


百度网盘可以用手机平板电脑在线播放,也可以下载之后播放

本帖资源评论
人工智能机器学习全新升级版I
人工智能机器学习全新升级版I
2018人工智能 XX学院 机器学习升级版V 第五期
2018人工智能 XX学院 机器学习升级版V 第五期
Python机器学习算法 升级版课程
[视频教程] 2018年XiaoX学院最新人工智能机器学习升级版III 视频教程 价值899
[机器学习/深度学习] 人工智能全新实战特训营-机器学习+人工智能+数据分析理论与实战教程 机器学习视频
Python机器学习算法 升级版课程(高清版)
小象学院《机器学习》升级版II
人工智能之机器学习视频课程
[机器学习/深度学习] 全球人工智能与机器学习技术大会 AICon人工智能专家团技
[机器学习/深度学习] 北风网人工智能全面系统学习课程 推荐系统+深度学习+机器学习三大阶段实战人工智能
小象学院机器学习升级版 第七期+课程源码
小象学院机器学习升级版 第七期+课程源码
北风网人工智能全面系统学习课程 推荐系统+深度学习+机器学习三大阶段实战人工智能
Python 神经网络 人工智能 机器学习
Python 神经网络 人工智能 机器学习
麦子学院人工智能机器学习教程
2017年《机器学习》升级版IV,从理论到实践
数据Python 分析升级版小象
[人工智能] 高大上 人工智能 机器学习 专题视频 7套打包分享
北风网人工智能全面系统学习课程 推荐系统+深度学习+机器学习三大阶段实战人工智能
全球人工智能与机器学习技术大会 AICon人工智能专家团技术专题课程 深度学习应用课程
全新人工智能开发系统学习尖端课程 高阶人工智能实战 尚学堂百战程序员人工智能课程
人工智能之机器学习视频课程 第3期
Python数据分析与建模+人工智能+机器学习经典算法 麦子学院零基础实战人工智能课程
[人工智能] 麦子学院新思维PLUS Python数据分析和机器学习_人工智能教程
前端与移动开发精编升级版视频教程 全新升级 四大模块轻松入门学习前端与移
高大上 人工智能 机器学习 专题视频 7套打包分享
[人工智能] 人工智能编程基础视频 机器学习与深度学习基础视频教程 无人驾驶汽车 自动同传翻译
[人工智能] 人工智能编程基础视频 机器学习与深度学习基础视频教程 无人驾驶汽车 自动同传翻译
[人工智能] 人工智能编程基础视频 机器学习与深度学习基础视频教程 无人驾驶汽车 自动同传翻译
北风人工智能+机器学习+深度学习+推荐系统实战第3期
领航Java入门项目.人工智能机器人
北风网人工智能之机器学习视频课程 第3期
[人工智能] 机器学习基石培训 台大讲师林轩田 机器学习基础入门培训视频教程 机器学习课程
数据Python分析升级版
[人工智能] 美国尖端人工智能视频教程 人工智能AI课程视频教程 785集 英文带字幕
人工智能聊天机器人实战项目
2018领航Java入门项目.人工智能机器人
AICon人工智能深度学习应用实践60讲
价值数万元的人工智能-机器学习-数据分析教程
人工智能导论与原理 (神经网络、机器学习、自然语言处理)
前端与移动开发精编升级版视频教程 全新升级 四大模块轻松入门学习前端与移动开发
2017AI人工智能时代基础实战python机器学习深度学习算法视频
人工智能与深度学习实战
最新人工智能全套学习视频课程
麦子学院人工智能教程
北风人工智能+机器学习+深度学习+推荐系统实战第3期 2017年6-11月
最新人工智能全套学习视频课程
全套人工智能教程
人工智能之深度学习应用实践60讲
麦子学院新思维PLUS Python数据分析和机器学习_人工智能教程
[人工智能] 1200个视频 斯坦福大学 顶级机器学习课程视频教程 人工智能最新科技成果分享
AICon人工智能专家团 —— 深度学习应用实践60讲
(升级版)Python升级3.6 强力Django+杀手级Xadmin
[人工智能] 北京邮电大学《人工智能与大数据》钟义信教授 视频学习教程
人工智能:IBM认知计算教程
《Python数据分析》升级版第二期
人工智能之深度学习应用实践60讲
人工智能全套资料!
超强全新大牛课程:Python基础夯实+人工智能实战学习视频教程 系统化Python实战
北风网人工智能全面系统学习课程 推荐系统+深度学习+机器学习三大阶段实战人
[Python] 超强全新大牛课程:Python基础夯实+人工智能实战学习视频教程 系统化
中国大学出品的人工智能精品之作视频课程 人工智能全套教程
[人工智能] 2018传智黑马Python人工智能视频教程(基础+就业+面试)
中国大学出品的人工智能精品之作视频课程 人工智能全套教程
高级人工智能教程视频
马哥教育2018全新人工智能+全能开发工程师视频
马哥教育2018全新人工智能+全能开发工程师试听视频
人工智能开发课程【百战程序员201805版】
人工智能4周理论+实践应用详解
人工智能精品合集
小象学院python数据分析升级版 第二期
基于Python实战学习人工智能最火的框架-TensorFlow课程
万门大学人工智能
[视频教程] 价值数万元的人工智能、机器学习、数据分析教程(无密)
2018年9月最新人工智能AI聊天机器人实战课程
上海万国人工智能演示视频
opencv+tensorflow入门人工智能图像处理
网易云课堂人工智能数学基础
人工智能、大数据与复杂系统
2018最新北风人工智能
麦子学院人工智能教程
人工智能教程国外教程
[人工智能] 2018传智黑马Python人工智能视频教程(基础+就业+面试)
新硅谷专家讲解从人工智能到机器学习视频教程英语中文字幕 54课
新硅谷专家讲解从人工智能到机器学习视频教程英语中文字幕 54课
[数据分析] 2017年Python数据分析班升级版视频教程附讲义源码
Python人工智能 TensorFlow框架应用实践
人工智能、大数据与复杂系统
[人工智能] 专为人工智能设计的数学培训课程视频 积分 方差 矩阵等
2018年python和人工智能全套视频
最新北风网人工智能(完整版)
Udacity、北邮、华盛顿大学 人工智能课程
北风网AI人工智能顶级实战工程师
2018北风人工智能全套视频教程
2018北风人工智能全套视频教程
人工智能产品经理最佳实践
深度有趣 - 人工智能实战合集